

Cluster Tool Simulation:

Implant Source Life and Recipe Scheduling

Cluster Tool Simulation Group (CTSG)
Claire Gryphon
Luis Ayala
Muhaimeinul Khan
Tariq Hanif

Agenda

Sponsor **Background Problem Statement** Scope & Objectives Approach Sample Analysis Results Recommendations Summary **Possible Future Work**

Sponsor

System Architectures Laboratory (SAL)

- Conducts research in the modeling of system architectures
- Currently working on issues in semiconductor manufacturing with Micron Technology (our previous sponsor and a current stakeholder)
- Interested in the analysis of cluster tools to improve process performance

Background

Semiconductor processing in Virginia:

- One of the largest exports in state of VA*
- Exceeds tobacco revenue and coal production

VA is home to a number of semiconductor manufacturing companies:

- Micron Technology
- White Oak Semiconductors
- Free-scale Semiconductors (formerly Motorola)

Source: Northern Virginia Technology Council (NVTC)

Cluster Tools

Cluster tools

- Semiconductor processing systems
- Used in microelectronics manufacturing

Composition

Robots, elevators, various chambers, etc.

Tool of interest

- Implant tool
- Creates layers of specific elements through implantation

Implant Process

Ion Source

The Implant tool utilizes an ion source to generate plasma for implantation

The ion source has a limited lifetime, which is affected by the recipes used during implantation.

Implant Process

Shower wafers' surface with an ion beam to create layers of positively/negatively charged elements

The layers can be made of Boron (B), Arsenic (As), Carbon (C), Phosphorous (P), and Germanium (Ge)

Recipe Sequencing

Used to improve the throughput of implant tools
Organizes recipes to minimize processing time
Set-up times between recipes affect the processing time of the lot train.

Ex 1:

lot train=[L1,L2,L3,L4], recipe sequence=[B,B,C,As] processing time = 2 hours

Ex 2:

lot train=[L1,L3,L2,L4], recipe sequence=[B,C,B,As] processing time = 3 hours

Problem Statement

Current recipe sequencing doesn't take source deterioration into account, resulting in:

- Short and unpredictable source life
- Frequent and costly source changes
- Extended set-up times from instability
- Potentially less than optimal throughput
- Lost productivity due to reduced tool availability

There's a need for a tool to aid in the scheduling of lots to:

- Extend implant tool availability
- Increase tool throughput

Scope & Objectives

Scope:

 Model the behavior of 1 implant tool with ion source deterioration.

Objectives:

- Application of a systems engineering approach to cluster tool modeling
- Development of an executable model that can simulate an implant tool with ion source deterioration

Approach Flow

Previous Sponsor

Had to provide

- Ion source deterioration information
- Scheduling algorithms to run on the simulation model

Unfortunately this was proprietary information We developed mechanisms to test the simulation model

- Simple schedules through algorithms
- User defined ion source deterioration due to recipes

Modeling Assumptions

All lots are available at time zero

The only delays between lot processing are the recipe set-up times

Assumed random distributions to illustrate deterioration for demonstration purposes

Simulation Model

Unified Modeling Language (UML)

 Used to develop object oriented diagrams for implant tool description

Colored Petri Nets (CPN)

Used to develop the implant tool simulation executable model

Class Diagram

Activity Diagram

State Transition Diagram

Start State Transition 2

Changing Source

Receive New Lot

Recipe Set
Up

Dispatch Lot

Dispatch Lot

CPN Model

CPN Model (Cont.)

Has two modes of operation

- Continuous
 - Processes all lots making the necessary source changes
- Failure
 - Only processes as many lots as one source permits

Takes information about

- Recipe processing times
- Set-up times
- Recipe source deterioration
 - Deterministic or random

CPN Model (Cont.)

Provides information about:

- Lots
 - Start and end times
 - Number of processed and unprocessed lots
- Processing times
 - Total implantation time
 - Total set-up time
- Ion source
 - Deterioration
 - Number of changes

Scheduling System

Developed to organize lots for demonstration of the use of the simulation tool

Scheduling algorithms:

- Shortest job greedy
- Longest job greedy
- Permutation algorithm

Shortest job-Greedy

It tries to minimize set-up times

Longest job - Greedy

It tries to maximize set-up times

Shortest Permutation Algorithm

Sample Scheduling Analysis

Proof-of-concept analysis

Objective: to demonstrate the benefits of using our simulation model

Used a random generator to create lot sequences Organized lots using our scheduling algorithms Studied the trade-off between process time and

ion source deterioration

Scheduling Analysis Results

Scheduling Analysis Results (Cont.)

Scheduling Analysis Results (Cont.)

Algorithm	Average Processing Time (min)	Average Remaining Source Life	Average Source Changes
Longest	4869.1	602.92	2.83
Shortest	3809.9	674.45	2
Permutation	3804.9	676.08	2

Scheduling Analysis Results (Cont.)

Longest greedy algorithm does not take source deterioration into account

The two fastest scheduling algorithms reduced source deterioration by reducing the set-up times

Summary

Our tool can be used to:

- Study the benefits of different scheduling techniques
- Test schedules before implementation
- Identify if the current schedule needs adjustments to minimize source changes
- Adjust schedules based on results of simulation
- Increase tool availability
- Meet manufacturing demand
- Save money

Possible Future Work

Study the failure or deterioration of other semiconductor processes (e.g. process chambers)

Expand simulation tool to study a group of (5 or 6) implantation tools

Develop a scheduling algorithm that organizes lots based on ion source deterioration and test it with our tool

Questions?

Thanks To:

Dr. Zaidi, Dr. Hoffman, Dr. Huang, and our classmates for their helpful comments and advice and everyone else for their attention

